Exercise 1

Find the linearization $L(x)$ of the function at a.

$$
f(x)=x^{3}-x^{2}+3, \quad a=-2
$$

Solution

Start by finding the corresponding y-value to $x=-2$.

$$
f(-2)=(-2)^{3}-(-2)^{2}+3=-9
$$

Then find the slope of the tangent line to the function at $x=2$ by computing $f^{\prime}(x)$,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{3}-x^{2}+3\right) \\
& =3 x^{2}-2 x,
\end{aligned}
$$

and plugging in $x=-2$.

$$
f^{\prime}(-2)=3(-2)^{2}-2(-2)=16
$$

Now use the point-slope formula to obtain the equation of the line going through $(-2,-9)$ with slope 16.

$$
\begin{gathered}
y-f(-2)=f^{\prime}(-2)(x-(-2)) \\
y-(-9)=16(x+2) \\
y+9=16 x+32 \\
y=16 x+23
\end{gathered}
$$

Therefore, the linearization of the function $f(x)$ at $a=-2$ is

$$
L(x)=16 x+23
$$

Below is a plot of the function and the linearization at $a=-2$ versus x.

